

Welcome to xiRT’s documentation!

[image: _images/xiRT_logo.png]
xiRT is a versatile python package for multi-dimensional retention time prediction
for linear and crosslinked peptides.

xiRT requires identified peptide sequences with an assigned confidence (FDR) to learn the retention
behavior from multiple dimensions. The high confidence identifications are necessary to reduce
the noise in the data which allows more accurate retention time prediction. However, typically
we want to supply higher FDR (>1%) data to also predict the retention times for peptide spectrum
matches where the search score was not sufficient for passing the FDR cutoff. Post-search validation
algorithms such as percolator [http://percolator.ms/] can then be used to rescore the given set
of PSMs with the predicted retention times.

Approach.

[image: _images/xiRT.PNG]
xiRT uses a deep neural network architecture to realize the simultaneous learning for multiple
retention times. In brief, xiRT builds a multi-layer network that can be divided into a Siamese part
and individual task subnetworks. The Siamese part takes the peptide sequences as input and applies
an embedding and recurrent function to the input. For linear peptides the output of the
recurrent layer is directly forwarded to the task subnetworks. For crosslinked peptides, each
peptide has its own input and after the recurrent layer the two outputs are first combined and then
passed towards the individual task networks. In contrast, to typical regression models the input
data (peptide) sequences are not transformed into features but rather the entire peptide
sequence including modifications is used as input.

Supported Prediction Tasks

xiRT is versatile in the input and experimental design. An arbitrary number of prefractionation
methods are supported as well as a standard reversed phase RT prediction. In addition,
similar tasks such has collision-cross section prediction can be learned.

Contents:

	xiRT - Introduction
	Description

	General Usage
	Quick start

	Examples
	Reversed-phase Prediction

	2D RT Prediction - Ordinal Task

	2D RT Prediction - Classification Task

	Transfer Learning

	Further extensions

	Note

	Results
	Log File

	Callbacks

	Visualizations

	Tables

	Parameters
	xiRT-Parameters

	Learning-Parameters

	Hyperparameter-Optimization

	Frequently Asked Questions
	1. What is xiRT?

	2. How does xiRT work?

	3. What are the requirements for xiRT?

	4. Do I need a GPU?

	5. What’s the run time of xiRT?

	6. Where can I get help using xiRT?

	7. Which chromatography types are supported?

	8. xirt_params.yaml - File not found error

	9. AttributeError: module ‘sip’ has no attribute ‘setapi’

	xiRT-Modules
	xirt package

	xiRT - development
	Preparing a new release

	Publishing a new release

Indices and tables

	Index

	Module Index

	Search Page

xiRT - Introduction

xiRT is a deep learning tool to predict the retention times(s) of linear and crosslinked peptides
from multiple fractionation dimensions including RP (typically coupled to the mass spectrometer).
xiRT was developed with a combination of SCX / hSAX / RP chromatography. However, xiRT supports all
available chromatography methods.

Description

xiRT is meant to be used to generate additional information about CSMs for machine learning-based
rescoring frameworks but the usage can be extended to spectral libraries, targeted acquisitions etc.

xiRT offers several training / prediction modes that need to be configured
depending on the use case. At the moment training, prediction, crossvalidation are the supported
modes.
- training: trains xiRT on the input CSMs (using 10% for validation) and stores a trained model
- prediction: use a pretrained model and predict RTs for the input CSMs
- crossvalidation: load/train a model and predict RTs for all data points without using them
in the training process. Requires the training of several models during CV.

Note: all modes can be supplemented by using a pre-trained model (“transfer learning”).

General Usage

The command line interface (CLI) requires three inputs:

	input spectra matches file (CSMs or PSMs)

	a YAML [https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html] file to configure the neural network architecture

	another YAML file to configure the general training / prediction behaviour, called setup-config

Configs are available via github [https://github.com/Rappsilber-Laboratory/xiRT/tree/master/default_parameters]).
Alternatively, up-to-date configs can be generated using the xiRT package itself:

> xirt -p learning_params.yaml
>
> xirt -s xirt_params.yaml

To use xiRT these options are combined as shown below:

>xirt -i CSMs.csv -o out_dir -x xirt_params.yaml -l learning_params.yaml

To adapt xiRT’s parameters, a yaml config file needs to be prepared. The configuration file
determines network parameters (number of neurons, layers, regularization) but also defines the
prediction task (classification / regression / ordinal regression). In general, the
default values do not need to be changed for standard use cases. Depending
on the decoding of the target variable, the output layers may need to be adapted.
For a usual RP prediction, regression is essentially the only viable option. For SCX / hSAX (e.g. general classification
from fractionation experiments) the prediction task can be formulated as classification,
regression or ordinal regression. For the usage of regression for fractionation, we recommend to use
fraction-specific eluent concentrations as prediction target variable (raw fraction numbers are also possible).
Please see some examples below to learn more about the different
parameterizations.

Quick start

The GitHub repository contains a few example files. Download the following files from HERE [https://github.com/Rappsilber-Laboratory/xiRT/tree/master/sample_data]:

	DSS_xisearch_fdr_CSM50percent_minimal.csv

	xirt_params_rp.yaml

	learning_params_training_cv.yaml

This set of files can now be used to perform a RP (only) prediction on crosslink data.
To run xiRT on the data call the main function as follows after successfull installation:

> xirt -i DSS_xisearch_fdr_CSM50percent_minimal.csv -o xirt_results/ -x xirt_params_rp.yaml -l learning_params_training_cv.yaml

Examples

This section covers a few use case examples. Please check the Parameters section to gain
a better understanding for each of the variables.

Reversed-phase Prediction

While xiRT was developed for multi-dimensional RT prediction, it can also be used for a single
dimension. For this, the xiRT YAML parameter file needs to be adapted as follows:

output:
 rp-activation: linear
 rp-column: rp
 rp-dimension: 1
 rp-loss: mse
 rp-metrics: mse
 rp-weight: 1

predictions:
 continues:
 - rp
 # simply write fractions: [] if no fraction prediction is desired
 fractions: []

This configuration assumes that the target column in the input data is named “rp” and that the
scale is continuous (rp-activation: linear). If that is the case, the other parameters should
not be changed (dimension, loss, metric, weight).

2D RT Prediction - Ordinal Task

	Many studies apply a pre-fractionation method (e.g. SEC, SCX) and then measure the obtained fractions.

	For this given experimental setup, the xiRT config could look like this:

output:
 rp-activation: linear
 rp-column: rp
 rp-dimension: 1
 rp-loss: mse
 rp-metrics: mse
 rp-weight: 1

 scx-activation: sigmoid
 scx-column: scx_ordinal
 scx-dimension: 15
 scx-loss: binary_crossentropy
 scx-metrics: mse
 scx-weight: 50

predictions:
 continues:
 - rp
 # simply write fractions: [] if no fraction prediction is desired
 fractions: [scx]

In this config, 15 fractions (or pools) were measured. While RP prediction is modeled as regression
problem, the SCX prediction is handled as ordinal regression. This type of regression performs
classification while accounting for the magnitude of the classification errors. E.g. in a regular
classification it does not matter whether an observed PSM from fraction 5, got predicted to
elute in fraction 10 or in fraction 4. The error would only count as false classification.
However, in ordinal regression the margin of error is incorporated to the loss function and thus
(theoretically) ordinal regression should perform better than classification. The weight here defines
how the losses from the two prediction tasks are added to derive the final loss. This parameter
needs to be adapted for differences in scale and type of the output.

2D RT Prediction - Classification Task

Despite the theoretical advantage of ordinal regression, classification also delivered good
results during the development of xiRT. Therefore, we kept this as an option.

For this experimental setup, the xiRT config could look like this:

output:
 rp-activation: linear
 rp-column: rp
 rp-dimension: 1
 rp-loss: mse
 rp-metrics: mse
 rp-weight: 1

 scx-activation: softmax
 scx-column: scx_1hot
 scx-dimension: 15
 scx-loss: categorical_crossentropy
 scx-metrics: accuracy
 scx-weight: 50

predictions:
 continues:
 - rp
 # simply write fractions: [] if no fraction prediction is desired
 fractions: [scx]

Here we have the same experimental setup as above but the scx prediction task is modeled
as classification. For classification, the activation function, column name and loss function must be
defined as in the example.

Transfer Learning

xiRT supports multiple types of transfer-learning. For instance,
training the exact same architecture (dimensions, sequence lengths) on a data set (e.g. BS3
crosslinked proteome) and then fine tune the learned weights on the actual data set (e.g. DSS crosslinked protein complex)
is possible.
This requires a simple change in the learning (-l parameter) config. The pretrained_model
parameter needs to be adapted for the location of the weights file from the BS3 model.

Additionally, the the underlying model can be changed even more. This might become necessary when the
training was done with e.g. 10 fractions but only 5 got acquired eventually. In this
scenario, the weights cannot be used from the last layers. Therefore, the pretrained_weights and
the pretrained_model parameter need to be defined in the learning (-l) config.

The files in the repository (“sample_data” and “DSS_transfer_learning_example” folder)
provide examples to achieve the transfer learning. Two calls to xiRT are necessary:

	Train the reference model without crossvalidation:

>xirt -i sample_data\DSS_xisearch_fdr_CSM50percent_minimal.csv \
-x sample_data\xirt_params_3RT_best_ordinal.yaml \
-l sample_data\learning_params_training_nocv.yaml \
-o models\3DRT_full_nocv

	Use the model for transfer-learning:

>xirt -i sample_data\DSS_xisearch_fdr_CSM50percent_transfer_scx17to23_hsax2to9_minimal.csv \
-x models/3DRT_full_nocv/callbacks/xirt_params_3RT_best_ordinal_scx17to23_hsax2to9.yaml \
-l models/3DRT_full_nocv/callbacks/learning_params_training_nocv_scx17to23_hsax2to9.yaml \
-o models\3DRT_transfer_dimensions

Further extensions

To further expand the tasks, two steps need to be done. First, the predictions section
needs to be adapted such that a list of values, for example, [scx, hsax] is supplied. Further,
each entry in the predictions section needs to have a matching set of entries in the output
section. Carefully adjust the combination of activation, loss and column parameters as shown above.
xiRT allows to have 3x regression tasks, 1x regression task + 1x classification task, etc.

In principle, the learning and prediction is agnostic to the type of input data. That means
that not only RT can be learned but also other experimentally observed properties. Simply follow
the notation and decoding of the training parameters to add other (non-liquid-chromatography) columns.

Note

It is important to follow the conventions above. Otherwise learning results might vary a lot.

For classification always use the following setup:

output:
 scx-activation: softmax
 scx-column: scx_1hot
 scx-dimension: 15
 scx-loss: categorical_crossentropy
 scx-metrics: accuracy

For ordinal regression always use the following setup:

output:
 scx-activation: sigmoid
 scx-column: scx_ordinal
 scx-dimension: 15
 scx-loss: binary_crossentropy
 scx-metrics: mse

For regression always use the following setup:

output:
 rp-activation: linear
 rp-column: rp
 rp-dimension: 1
 rp-loss: mse
 rp-metrics: mse

Results

This section covers the results that are generated from a successful xiRT run. In the command
line interface, the output folder needs to be specified. Typically, csv/xls files are the outputs of interest
for most applications. The created folder will contain the following results:

	log file

	callbacks

	quality control visualizations

	tables (CSV/XLS)

For more details, please see the following paragraphs.

Log File

The log file contains useful information, including the xiRT version and parameters. Moreover
the various steps performed during the analysis with xiRT are documented (e.g. number of duplicated entries,
amino acid alphabet, maximum sequence length etc.). The logs
also contain short numeric summaries from the CV training of xiRT.

2021-01-04 17:21:31,708 - xirt - INFO - Init logging file.
2021-01-04 17:21:31,708 - xirt - INFO - Starting Time: 17:21:31
2021-01-04 17:21:31,708 - xirt - INFO - Starting xiRT.
2021-01-04 17:21:31,708 - xirt - INFO - Using xiRT version: 1.0.63
2021-01-04 17:21:31,781 - xirt.__main__ - INFO - xi params: sample_data/xirt_params_3RT.yaml
2021-01-04 17:21:31,781 - xirt.__main__ - INFO - learning_params: sample_data/learning_params_training_cv.yaml
2021-01-04 17:21:31,781 - xirt.__main__ - INFO - peptides: sample_data/DSS_xisearch_fdr_CSM50percent.csv
2021-01-04 17:21:31,781 - xirt.predictor - INFO - Preprocessing peptides.
2021-01-04 17:21:31,781 - xirt.predictor - INFO - Input peptides: 17886
2021-01-04 17:21:31,781 - xirt.predictor - INFO - Reordering peptide sequences. (mode: crosslink)
2021-01-04 17:21:43,726 - xirt.processing - INFO - Preparing peptide sequences for columns: Peptide1,Peptide2
2021-01-04 17:21:44,296 - xirt.predictor - INFO - Duplicatad entries (by sequence only): 5426/17886
2021-01-04 17:21:44,312 - xirt.predictor - INFO - Encode crosslinked residues.
2021-01-04 17:21:46,910 - xirt.predictor - INFO - Applying length filter: 17886 peptides left
2021-01-04 17:21:46,920 - xirt.processing - INFO - Setting max_length to: 59
2021-01-04 17:21:47,012 - xirt.processing - INFO - alphabet: ['-OH' 'A' 'D' 'E' 'F' 'G' 'H' 'H-' 'I' 'K' 'L' 'M' 'N' 'O' 'P' 'Q' 'R'
 'S' 'T' 'V' 'W' 'Y' 'clA' 'clD' 'clE' 'clF' 'clG' 'clI' 'clK' 'clL' 'clM'
 'clN' 'clP' 'clQ' 'clR' 'clS' 'clT' 'clV' 'clY' 'clcmC' 'cloxM' 'cmC'
 ...
 ...
2021-01-04 17:28:38,903 - xirt.qc - INFO - Metrics: r2: 0.30 f1: 0.16 acc: 0.25 racc: 0.61
2021-01-04 17:28:39,207 - xirt.qc - INFO - QC: rp
2021-01-04 17:28:39,215 - xirt.qc - INFO - Metrics: r2: 0.69
2021-01-04 17:28:43,643 - xirt.__main__ - INFO - Writing output tables.
2021-01-04 17:29:01,207 - xirt.__main__ - INFO - Completed xiRT run.
2021-01-04 17:29:01,207 - xirt.__main__ - INFO - End Time: 17:29:01
2021-01-04 17:29:01,208 - xirt.__main__ - INFO - xiRT CV-training took: 7.20 minutes
2021-01-04 17:29:01,209 - xirt.__main__ - INFO - xiRT took: 7.49 minutes

Callbacks

Callbacks are used throughout xiRT to select the best performing model which is not necessarily
the last (epoch) model trained. To reuse already trained models for transfer-learning
and predictions on other data sets, the neural network model (“xirt_model_XX.h5”), as well as the
parameters/weights (“xirt_weights_XX.h5”) are stored. In addition, training results per epoch
are stored (“xirt_epochlog_XX.log”). “XX” refers to the cross-validation fold, e.g. 01, 02 and 03 for
k=3; -1 refers the predictions for the ‘unvalidated’ fold (e.g. all PSMs/CSMS with FDR > e.g. 1%.
The epoch log contains losses and metrics for the training and validation data. For some
applications the used encoder (mapping of amino acids to integers) needs to be transferred.
Therefore, the callbacks also include a trained label encoder from sklearn as pickled object
(“encoder.p”). The last file additionally contains the formatted input data as pickled data. It can
be used programmatically for debugging, exploration and manual retention time prediction using
an already existing model. The data can be parsed in python via:

import pickle
X, y = pickle.load(open("Xy_data.p", "rb"))
alpha_peptides, beta_peptides = X[0], X[1]
assuming 3 RT dimensions
RT1, RT2, RT3 = y

Visualizations

xiRT will create a rich set of QC plots that should always be investigated. The plots are stored
in svg/pdf format.

Epoch Loss / Metrics

[image: _images/cv_epochs_loss.png]
The epoch loss / metrics plot shows the training behavior over the epochs and is a good diagnostic tool to
assess robustness across CV-folds, learning rate adjustment, overfit-detection and general learning
behavior across tasks. In the example above, we see quick convergence and robust learning behavior
after 10 epochs. In non-regression tasks, loss and metrics are not necessarily the same.

CV Summary

[image: _images/cv_summary_strip_loss.png]
The CV summary shows the point estimates of the loss/metric for the training, validation
and prediction folds for all training tasks. Unvalidation refers to the data not passing the
training confidence (here: FDR) cutoff.

CV Observations

[image: _images/qc_cv01_obs_pred.png]
This plot shows the prediction performance for each CV-fold on all tasks. It also reports some
key metrics that are not reported in the epoch log (r2, f1, accuracy, relaxed accuracy).

Tables

The tables contain a lot of extra information (some of which is used for the QC plots above). Please
find an example of each file on (GitHub)[https://github.com/Rappsilber-Laboratory/xiRT/tree/master/sample_data/DSS_results_example].

Processed PSMs

This table (“processed_psms.csv”) contains the input data together with internally performed
processing steps. The additional columns, as exemplified on a test dataset, are:

	swapped (indicator if peptide order was swapped)

	Seq_Peptide1/Seq_Peptide2 (peptide sequences in modX format)

	Seqar_Peptide1/Seqar_Peptide2 (peptide sequences in array format

	Duplicate (indicator if combination of sequences and charge is unique within the xiRT definition)

	scx0_based (0-based fraction number)

	scx_1hot (1-hot encoded fraction variable)

	scx_ordinal (ordinal encoded fraction variable)

	fdr_mask (indicator if PSM passed the FDR for training)

Epoch History

This table (“epoch_history.csv”) has similar data as the callbacks version but the CV results are
concatenated and learning rate decay is documented.

Error Features

This table (“error_features.csv”) contains the input PSMID, crossvalidation split annotation
and the predicted retention times (including their basic error terms).

Error Features Interactions

This table (“error_features_interactions.csv”) contains the input PSMID,
and the some engineered error terms from the previous table.

Model Summary

This table (“model_summary.csv”) contains important metrics that summarize the performance of the
learned models across CV-splits and their corresponding train/validation/prediction splits.

Parameters

xiRT needs two sets of parameters that are supplied via two YAML files. The xiRT parameters
contain the settings that define the network architecture and learning tasks. With different / new
types of chromatography or other separation settings, the learning behavior is influenced and hence
needs adjustement. The learning parameters are used to define the learning data (e.g. filtered to
a desired confidence limit) and some higher-level learning behaviour. For instance, settings for
loading pretrained models and cross-validation are controlled.

xiRT-Parameters

The xiRT-Parameters can be divided into several categories that either reflect the individual
layers of the network or some higher level parameters. Since the input file structure is very
dynamic, the xiRT configuration needs to be handled with care. For example, the RT information
in the input data is encoded in the predictions section. Here, the column names of the RT
data needs to be defined. Accordingly, the learning options in the output section must be
adapted. Each prediction task needs the parameters x-activation, x-column, x-dimension,
x-loss, x-metrics and x-weight, where “x” represents the seperation method of interest.

Please see here for an example YAML file including comments (form xiRT v. 1.0.32):

LSTM:
 activation: tanh # activiation function
 activity_regularization: l2 # regularization to use
 activityregularizer_value: 0.001 # lambda value
 bidirectional: true # if RNN-cell should work bidirectional
 kernel_regularization: l2 # kernel regularization method
 kernelregularizer_value: 0.001 # lambda value
 lstm_bn: true # use batch normalization
 nlayers: 1 # number of layers
 type: GRU # RNN type of layer to use: GRU, LSTM and CuDNNGRU, CuDNNGRU
 units: 50 # number of units in the RNN cell
dense: # parameters for the dense layers
 activation: # type of activiations to use for the layers (for each layer)
 - relu # activiation function
 - relu
 - relu
 dense_bn: # use batch normalization
 - true
 - true
 - true
 dropout: # dropout usage rate
 - 0.1
 - 0.1
 - 0.1
 kernel_regularizer: # regularizer for the kernel
 - l2
 - l2
 - l2
 neurons: # number of neurons per layer
 - 300
 - 150
 - 75
 nlayers: 3 # number of layers, this number must be matched by the parameters
 regularization: # use regularization
 - true
 - true
 - true
 regularizer_value: # lambda values
 - 0.001
 - 0.001
 - 0.001
embedding: # parameters for the embedding layer
 length: 50 # embedding vector dimension
learning: # learning phase parameters
 batch_size: 128 # observations to use per batch
 epochs: 75 # maximal epochs to train
 learningrate: 0.001 # initial learning rate
 verbose: 1 # verbose training information
output: # important learning parameters
 callback-path: data/results/callbacks/ # network architectures and weights will be stored here
 # the following parameters need to be defined for each chromatography variable
 hsax-activation: sigmoid # activiation function, use linear for regression
 hsax-column: hsax_ordinal # output column name
 hsax-dimension: 10 # equals number of fractions
 hsax-loss: binary_crossentropy # loss function, must be adapted for regression / classification
 hsax-metrics: mse # report the following metric
 hsax-weight: 50 # weight to be used in the loss function
 rp-activation: linear
 rp-column: rp
 rp-dimension: 1
 rp-loss: mse
 rp-metrics: mse
 rp-weight: 1
 scx-activation: sigmoid
 scx-column: scx_ordinal
 scx-dimension: 9
 scx-loss: binary_crossentropy
 scx-metrics: mse
 scx-weight: 50
siamese: # parameters for the siamese part
 use: True # use siamese
 merge_type: add # how to combine individual network params after the Siamese network
 single_predictions: True # use also single peptide predictions
callbacks: # callbacks to use
 check_point: True
 log_csv: True
 early_stopping: True
 early_stopping_patience: 15
 tensor_board: False
 progressbar: True
 reduce_lr: True
 reduce_lr_factor: 0.5
 reduce_lr_patience: 15
predictions:
 # parameters that define how the input variables are treated
 # "continues" means that linear (regression) activation functions are used for the learning.
 # if this should be done, the above parameters must also be adapted (weight, loss, metric, etc)
 continues:
 - rp
 fractions: # simply write fractions: [] if no fraction prediction is desired
 # if (discrete) fraction numbers should be used for the learning, this needs to be
 # indicated here
 # For fractions, either ordinal regression or classification can be used in the
 # fractions setting (regression is possible too).
 - scx
 - hsax

Apart from the very important neural network architecture definitions, the target variable encoding
is also defined in the YAML.

Learning-Parameters

Parameters that govern the separation of training and testing data for the learning.

Here is an example YAML file with comments (form xiRT v. 1.0.32):

preprocessing options:
le: str, label encoder location. Only needed for transfer learning, or usage of pretrained
max_length: float, max length of sequences
cl_residue: bool, if True crosslinked residues are decoded as Kcl or in modX format clK
preprocessing:
 le: None
 max_length: -1 # -1
 cl_residue: True

fdr: float, a FDR cutoff for peptide matches to be included in the training process
ncv: int, number of CV folds to perform to avoid training/prediction on the same data
mode: str, must be one of: train, crossvalidation, predict
train and transfer share the same options that are necessary to run xiML, here is a brief rundown:
augment: bool, if data augmentation should be performed
sequence_type: str, must be linear, crosslink, pseudolinear. crosslink uses the siamese network
pretrained_weights: "None", str location of neural network weights. Only embedding/RNN weights
are loaded. pretrained weights can be used with all modes, essentially resembling a transfer
learning set-up
sample_frac: float, (0, 1) used for downsampling the input data (e.g. for learning curves).
Usually, left to 1 if all data should be used for training
sample_state: int, random state to be used for shuffling the data. Important for recreating
results.
refit: bool, if True the classifier is refit on all the data below the FDR cutoff to predict
the RT times for all peptide matches above the FDR cutoff. If false, the already trained CV
classifier with the lowest validation loss is chosen
train:
 fdr: 0.01
 ncv: 3
 mode: "crossvalidation" # other modes are: train / crossvalidation / predict
 augment: False
 sequence_type: "crosslink"
 pretrained_weights: "None"
 test_frac: 0.10
 sample_frac: 1
 sample_state: 21
 refit: False

Generally, it is better to supply more high-quality data than more data. Sometimes considerable
drops in performance can be observed when 5% instead of 1% input data is used. However, there is
no general rule of thumb and this needs to be optimized per run / experiment.

Hyperparameter-Optimization

Neural Networks are very sensitive to their hyperparameters. To automate the daunting task
of finding the right hyperparameters two
utils [https://github.com/Rappsilber-Laboratory/xiRT/tree/master/utils] are shipped with xiRT.
1) a convenience function that generates YAML files from a grid YAML file. 2) a snakemake workflow
that can be used to run xiRT with each parameter combination.

The grid will be generated based on all entries where not a single value is passed but a list of
values. This can lead to an enormous search space, so step-wise optimization is sometimes the
only viable option.

Frequently Asked Questions

1. What is xiRT?

xiRT is a python package for multi-dimensional RT prediction for linear and cross-linked peptides.

2. How does xiRT work?

xiRT is a deep learning application and uses a Siamese network to encode crosslinked peptides.
xiRT can predict continuous and discrete retention times (e.g. from reversed phase or
fractionation experiments).

3. What are the requirements for xiRT?

xiRT requires a running python installation, please follow the installation guide to get xiRT
running. To visualize the neural network pydot and graphviz are also needed.

4. Do I need a GPU?

A GPU is not necessary to use xiRT. It speeds things up but xiRT can run on any desktop computer.
Make sure to specify the correct layer in the xirt_params file (e.g. GRU instead of CudNNGRU).

5. What’s the run time of xiRT?

Depends heavily on the settings (e.g. cross-validation folds, epochs, number input PSMs). For the
example data (3-fold crossvalidation, 17k PSMs, 25 epochs) the analysis finishes within 10 minutes
on a desktop pc.

6. Where can I get help using xiRT?

Please create an GitHub issue [https://github.com/Rappsilber-Laboratory/xiRT/issues/new]
if we can assist you with your analysis or if anything is unclear.

7. Which chromatography types are supported?

xiRT is agnostic to the type of chromatography and supports to learn 1, 2,3 …, n chromatography
dimensions at the same time. Continuous (e.g. reversed phase) and discrete
(fractionation) retention time measurements are supported.

8. xirt_params.yaml - File not found error

When using xirt over the command line, make sure to allways use the relative or absolute path to
the input files.

9. AttributeError: module ‘sip’ has no attribute ‘setapi’

The current matplotlib version (3.3) seems to have a bug. Please install matplitlib 3.2 (pip install matplotlib==3.2).

xiRT-Modules

	xirt package
	Submodules

	xirt.features module

	xirt.predictor module

	xirt.processing module

	xirt.sequences module

	xirt.xirtnet module

	Module contents

xirt package

Submodules

xirt.features module

xirt.predictor module

xirt.processing module

xirt.sequences module

xirt.xirtnet module

Module contents

xiRT - development

This section covers some guidelines for the development of xiRT. Especially, how to generate
a new release.

Preparing a new release

The preparation include to run all tests locally and make sure that they pass. In addition,
the test coverage badge needs to be generated by calling:

`
>coverage-badge -o documentation/imgs/coverage.svg -f
`

If everything passes, the documentation needs to generated. Make sure to include
new pages in the index page and build the documentation by calling:

`
>sphinx-build -b html documentation/source documentation/build
`

Publishing a new release

To release a new version two steps are necessary:
1) create the PyPi release
2) create the github release

For 1) execute the following command and have the PyPi and github credentials and hand:
`
>python setup.py upload
`

Make sure to bump the version number with the last commit before executing the setup file. This will
automatically generate a tag in github along the PyPi package.

2) Can be done via the github project page. Simply navigate to the “create release” page and upload
the binaries / wheels that have been generated with the setup.py file. Make sure tom summarize the
changes to the last version.

Index

 #### Installation
To install xiRT simply run the command below. We recommend to use an isolated python environment,
for example by using pipenv or conda. Installation should finish within minutes.

Using pipenv:
>pipenv shell
>
>pip install xirt

To enable CUDA support, using a [conda environment](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-with-commands) is the easiest solution.
Conda will take care of the CUDA libraries and other dependencies. Note, xiRT runs either on CPUs
or GPUs. To use a GPU specify CuDNNGRU/CuDNNLSTM as type in the LSTM settings, to use a CPU set the
type to GRU/LSTM.

> conda create –name xirt_env python=3.8
>
>conda activate xirt_env
>
> pip install xirt

Hint:
The plotting functionality for the network is not enabled per default because
pydot and graphviz sometimes make trouble when they are installed via pip. If on linux,
simply use sudo apt-get install graphviz, on windows download latest graphviz package from
[here](https://www2.graphviz.org/Packages/stable/windows/), unzip the content of the file and the
bin directory path to the windows PATH variable. These two packages allow the visualization
of the neural network architecture. xiRT will function also without this functionality.

Older versions of TensorFlow will require the separate installation of tensorflow-gpu. We recommend
to install tensorflow in conda, especially if GPU usage is desired.

 _images/cv_summary_strip_loss.png
p

SCX

90

30

1.00

hsax

0.75

o
ol
o

Aoeinooe

0.25

0.00

1.00

p

0.75

o
10
o

Aoeinooe

0.25

0.00

SCX

90

SSO

30

hsax

0.45

SSO|

0.15

0.00

0.1

0.0

uonepljeaun
uonoIpald
uonepijen
ules|

uonepljeAun
uonoIpald
uonepijen
ules |

uonepljeAun
uonoIpald
uoneplien
ules|

uonepljeAun
uonoIpaid
uonepien
ules|

uonepljeAun
uonoIpald
uonepije
ulel|

uonepljeAun
uonoIpaid
uonepien
ules|

_images/qc_cv01_obs_pred.png
Predicted hsax
2 3 4 5 6 7 8 9

1

hsax

r2: 0.78 f1: 0.37 acc: 0.40 racc: 0.86

1 1

17 50101
4 307445 9 1
6 8053 8 2 1
3598 23 1 2

3 4

1 4 9 11 33 29

1 2

1 1

1
3
S
1
2
1

1832
0

1 2 3 4 5 6
Observed hsax

/7 8

200

150

— 100

- 50

Predicted scx

2 3 4 5 6 7 8

1

0

SCX

r2: 0.68 f1: 0.38 acc: 0.38 racc: 0.79

1 3 23
3 22

1

aks142 13 7 4
14 21 11 12 11

0O 1 2 3 4 5 6 7 8
Observed scx

CV: 1

150

100

- 50

100

~
Ol

Predicted rp
@)
o

N
@)

r2: 0.92

50 75
Observed RP

100

_images/cv_epochs_loss.png
SUA_1IUSOS 0 Ualiiinly

- 200000

- 150000

- 100000 9
=

— 50000

0.45

o 0.30
)

0.15 -

—— scx_mse — training

L 200000

- 150000

- 100000 &
=

— 50000

_static/comment-bright.png

_images/xiRT_logo.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to xiRT’s documentation!

 		
 xiRT - Introduction

 		
 Description

 		
 General Usage

 		
 Quick start

 		
 Examples

 		
 Reversed-phase Prediction

 		
 2D RT Prediction - Ordinal Task

 		
 2D RT Prediction - Classification Task

 		
 Transfer Learning

 		
 Further extensions

 		
 Note

 		
 Results

 		
 Log File

 		
 Callbacks

 		
 Visualizations

 		
 Epoch Loss / Metrics

 		
 CV Summary

 		
 CV Observations

 		
 Tables

 		
 Processed PSMs

 		
 Epoch History

 		
 Error Features

 		
 Error Features Interactions

 		
 Model Summary

 		
 Parameters

 		
 xiRT-Parameters

 		
 Learning-Parameters

 		
 Hyperparameter-Optimization

 		
 Frequently Asked Questions

 		
 1. What is xiRT?

 		
 2. How does xiRT work?

 		
 3. What are the requirements for xiRT?

 		
 4. Do I need a GPU?

 		
 5. What’s the run time of xiRT?

 		
 6. Where can I get help using xiRT?

 		
 7. Which chromatography types are supported?

 		
 8. xirt_params.yaml - File not found error

 		
 9. AttributeError: module ‘sip’ has no attribute ‘setapi’

 		
 xiRT-Modules

 		
 xirt package

 		
 Submodules

 		
 xirt.features module

 		
 xirt.predictor module

 		
 xirt.processing module

 		
 xirt.sequences module

 		
 xirt.xirtnet module

 		
 Module contents

 		
 xiRT - development

 		
 Preparing a new release

 		
 Publishing a new release

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

